Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage.

نویسندگان

  • Colin D Wessells
  • Matthew T McDowell
  • Sandeep V Peddada
  • Mauro Pasta
  • Robert A Huggins
  • Yi Cui
چکیده

The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries.

The electrical power grid faces a growing need for large-scale energy storage over a wide range of time scales due to costly short-term transients, frequency regulation, and load balancing. The durability, high power, energy efficiency, and low cost needed for grid-scale storage pose substantial challenges for conventional battery technology. (1, 2) Here, we demonstrate insertion/extraction of...

متن کامل

Safe , Inexpensive , Long Life , High Power and Efficiency Batteries For Grid Scale Energy

New types of energy storage are required in conjunction with the deployment of renewable energy sources and their integration with the electrical grid. A new kind of energy storage technology is needed for short-term grid storage applications, as existing technology struggle to meet the needs of these applications at a reasonable price. We previously introduced a new family of cathode materials...

متن کامل

An Experimental and Comparative Analysis of the Battery Charge Controllers in Off-Grid PV Systems

The study of the battery charge process as the only power storage agent in off-grid systems is of significant importance. The battery charge process has different modes, and the battery in these modes is dependent on the amount of charge. In order to charge the battery in off-grid systems, two charge controllers including Pulse Width Modulation (PWM) and Maximum Power Point Tracker (MPPT) are c...

متن کامل

A New Method for Hybrid Energy Storage Capacity Determination in Isolated Micro Grid

In recent years, hybrid energy storage (HES) to increase lifetime and reliability extremely are used in renewable systems and microgrids. In this paper, a new method for determining battery and supercapacitor capacity in an isolated microgrid is presented. Difference between Generation and load power using discrete fourier transform is transferred to the frequency domain and by determining the ...

متن کامل

Copper hexacyanoferrate battery electrodes with long cycle life and high power.

Short-term transients, including those related to wind and solar sources, present challenges to the electrical grid. Stationary energy storage systems that can operate for many cycles, at high power, with high round-trip energy efficiency, and at low cost are required. Existing energy storage technologies cannot satisfy these requirements. Here we show that crystalline nanoparticles of copper h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 6 2  شماره 

صفحات  -

تاریخ انتشار 2012